
SecCO-OC: Securing microservice-based apps
Valentina Casola∗, Vincenzo Riccio†, Giuseppe Tricomi‡, Giovanni Merlino‡,

Pietro Di Gianantonio†, Bruno Crispo∥ Massimiliano Rak¶, Antonio Puliafito‡,
† Department of Mathematics, Computer Science and Physics, Università di Udine, Udine, Italy

∗ Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
∥ Department of Information Engineering and Computer Science - Università di Trento, Trento, Italy

¶ Department of Engineering, University of Campania Luigi Vanvitelli, Aversa, Italy
‡ Department of Engineering - Università di Messina, Messina, Italy

Abstract—Containers are essential elements for developing
applications based on the microservices paradigm. Evaluating
their security is a complex challenge, especially in distributed
and heterogeneous contexts. Additionally, developers should focus
exclusively on integration and deployment processes, not caring
about the security of microservices/containers produced for the
application, platform, or framework where it is implemented.

Smart Cities are environments belonging to computing con-
tinuum that enables the distribution of computation among
resources spanning from Cloud to Edge Resources. The
microservice-based applications distributed on Smart Cities
present further security breaches due to their distributed nature.
The SecCo-OC project aims to create an architecture capable
of integrating within the CI/CD process, typical of the DevOps
development paradigm, a series of workflows dedicated to the
security of the container and the developed microservice. This
involves static and dynamic threat analysis, their resolution, also
through runtime enforcement, and the publication of the secure
container in a dedicated repository.

The architecture of SecCo-OC is designed to meet the require-
ments of scalability, flexibility, and reliability. This is achieved
by adopting Cloud/Edge and I/O cloud-based solutions, enabling
the extension of the DevOps paradigm to security even in
environments related to pervasive computing.

Index Terms—Container Security; CI/CD; Edge Computing;

I. INTRODUCTION AND RELATED WORKS

In the context of Smart Cities, multiple scenarios such as
remote monitoring of critical infrastructures, emergency re-
sponses, traffic management, and urban planning, benefit from
moving functionality towards the edges. Container technology
supports this by developing container-orchestration systems
specifically for edge devices (e.g., microk8s and k3s). These
benefits are even more emphasized when applications running
on containers are developed as a combination of microservices.
Scalability, portability, and fault tolerance are just a few of the
attributes that can be better exploited by running microservices
at the edge. However, ensuring security is more challenging
due to the lack of a single enforcement point, the distributed
data and computations, and the weaker isolation properties
of containers compared to traditional virtual machines [1]. In
this work, we introduce the methodology and tools developed
for securing containers as part of the SecCo-OC project.
We also demonstrate how it will be applied to a smart city
case study, i.e., an Urban Intelligent application. One of the
main challenges we encountered consists in integrating our

architecture within the CI/CD paradigm, in alignment with
the security requirements and best practices.

According to McGraw [2], security should be addressed
early at the requirements level. Software requirements should
include both functional and security requisites. Additionally,
McGraw suggests using abuse cases to describe the system’s
behavior under attack and to cover the security space. Russell
et al. [3] identify most software security problems in the
use of unsophisticated development techniques, the lack of
security-focused quality assurance, and limited training for
software developers and project managers. In [4]–[6] authors
are proposing secdevops methodologies and a model that
outlines all the security activities needed during software
development [6]. In this context, are defined the enabling
methodologies and tools to build a Hardening module ca-
pable of outputting a set of secured containers—ready to
host a microservice application—that comply with security
best practices and the requirements of the CI/CD team. The
hardening process includes activities, such as threat modeling
and vulnerability assessment (VA), applied to the case of
containers [6]. Although the container security research is an
hot topic of research, there is a notable absence of behav-
ioral models and dedicated languages for specifying container
security policies. Temporal logics like LTL and modal µ-
calculus [7] are used for process behavior, supporting static
model-checking [8] and dynamic monitoring [9]. Satoh and
Tokuda [10] proposed a mechanism for composing security
policies in Service-oriented Architectures, but its applicability
to the less-structured container context is unclear. Burco et al.
[11] introduced a graph-based model for containers using Bi-
graphical Reactive Systems (BRSs), enabling the formalization
and verification of container properties through graph theory
techniques. An open research challenge is designing solutions
that simultaneously guarantee enforcement of runtime policies
(e.g., control flow integrity) and acceptable overheads to run
on a wide range of edge devices [12], [13].

II. A METHODOLOGY TO DESIGN AND TEST
CONTAINER-BASED APPLICATIONS

We have defined a general enabling methodology and a
suite of tools to secure containers in compliance with security
best practices and the requirements of the CI/CD team. The
hardening process for containers includes various activities



Threat Description
Injection Flaws Injection Flaws occur when data not validated are sent

as part of a command or query to their interpreter. The
data can deceive the interpreter running commands
not provided or accessing data for which you have
no authorization.

Online Guess-
ing

An attacker may try to guess valid username/password
combinations

Unauthorized
Entry

An adversary can entry to a server or account without
authorization

Spoofing Exter-
nal IPv6

An attacker in a container can craft IPv6 router
advertisements and consequently, spoof external IPv6
hosts, obtain sensitive information or cause a denial
of service

Container
Escape

An attacker can perform full container escape, gaining
control over the host system

TABLE I
EXAMPLE OF THREATS FROM THE CATALOGUE

[4], such as threat modeling, risk evaluation, security control
identification, and both static and dynamic security testing
techniques, including VA and penetration testing. Figure 1
illustrates the main steps of the adopted methodology, which
are mapped onto the typical stages of the DevOps process
from planning to testing.

Application
Modeling

Threat
Modeling

Security 
Controls 

Identification

plan code build test

Code 
Review

Dynamic
analysis

Penetration
testing

Static
Security

Assessment
Vulnerability

scanning

Fig. 1. Main stages of the SecDevOps methodology for Containers.

A catalogue of container-specific threats has been identified,
leading the pipeline to support the hardening of general-
purpose containers to meet the technical and security features
of the application provided by the CI/CD team and security
best practices. Table I lists some threats specific to the Smart
Cities case study along with their descriptions.

This will applied to the initial architecture of the SecCo
case study, represented by an Urban Intelligent Application,
as represented in Figure 2.

Fig. 2. An Urban Intelligence application Architecture
The architecture includes vehicles Edge nodes, which exe-

cute a Microservices Application, and Smart City ITS nodes
with 3rd party Application Collectors or cooperative appli-
cations that gather data from vehicles. Applications running
on Edge Devices include microservices for controlling vehicle
routes and predictive maintenance. A core application on Fog,
the Urban mobility application, gathers information from edge
nodes (microservices injected on Edge to collect data and
receive information from the Smart City) for the preemptive
identification of congestion and shaping vehicular flow to
minimize emissions in areas with high pollution levels (via
route advices).

III. ACKNOWLEDGMENTS

This work is partially supported by the Project SecCo-OC
CUP N. D33C22001300002 PNRR M4 C2 I1.3 “SEcurity and
RIghts in the CyberSpace (SERICS)” PE0000014 PE7 funded
by Next-Generation EU.

REFERENCES

[1] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE access, vol. 7, pp. 52 976–52 996,
2019.

[2] G. Mcgraw, “Software security,” IEEE Security amp; Privacy
Magazine, vol. 2, no. 2, p. 80–83, Mar. 2004. [Online]. Available:
http://dx.doi.org/10.1109/MSECP.2004.1281254

[3] R. L. Jones and A. Rastogi, “Secure coding: Building
security into the software development life cycle,” Information
Systems Security, p. 29–39, Nov. 2004. [Online]. Available:
http://dx.doi.org/10.1201/1086/44797.13.5.20041101/84907.5

[4] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “A novel security-
by-design methodology: Modeling and assessing security by slas with
a quantitative approach,” Journal of Systems and Software, vol. 163, p.
110537, 2020.

[5] V. Casola, A. De Benedictis, M. Rak, and G. Salzillo, “A cloud secde-
vops methodology: from design to testing,” in Quality of Information and
Communications Technology QUATIC 2020, Faro, Portugal, September
9–11, 2020. Springer, 2020, pp. 317–331.

[6] D. Granata, M. Rak, and G. Salzillo, “Metasend: a security enabled
development life cycle meta-model,” in Proceedings of the 17th Inter-
national Conference on Availability, Reliability and Security, 2022, pp.
1–10.

[7] J. Bradfield and C. Stirling, “12 modal mu-calculi,” Studies in logic and
practical reasoning, vol. 3, pp. 721–756, 2007.

[8] C. Stirling and D. Walker, “Local model checking in the modal mu-
calculus,” Theoretical Computer Science, vol. 89, no. 1, pp. 161–177,
1991.

[9] F. Martinell and I. Matteucci, “Through modeling to synthesis of security
automata,” Electronic Notes in Theoretical Computer Science, vol. 179,
pp. 31–46, 2007.

[10] F. Satoh and T. Tokuda, “Security policy composition for composite web
services,” IEEE Transactions on Services Computing, vol. 4, no. 4, pp.
314–327, 2010.

[11] F. Burco, M. Miculan, and M. Peressotti, “Towards a formal model for
composable container systems,” in Proceedings of the 35th Annual ACM
Symposium on Applied Computing, 2020, pp. 173–175.

[12] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “{PISTIS}: Trusted
computing architecture for low-end embedded systems,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 3843–3860.

[13] L. Degani, M. Salehi, F. Martinelli, and B. Crispo, “µ ips: Software-
based intrusion prevention for bare-metal embedded systems,” in Euro-
pean Symposium on Research in Computer Security. Springer, 2023,
pp. 311–331.


