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Abstract—The technology and innovations introduced by in-
formation systems have revolutionized how public institutions
use their infrastructures and manage their assets. In such a
context, Information Computer Technologies (ICT) represent a
powerful tool through which it is possible to ensure the transition
between the previous management and the new needs in the
context of Smart mobility and, in general, Smart City. This
paper presents a remote monitoring system built at the port
terminal of Tremestieri (located in the city of Messina, Italy) that
exploits deep learning to perform an Automatic Number Plate
Recognition (ANPR) of vehicles transiting the area. Using a set of
cameras installed at the terminal, this system allows to compute
synthetic traffic indicators that can be used to infer the traffic
conditions and the overall operability of the infrastructure in a
non-invasive manner, highlighting daily peak hours and trends in
the use of the terminal, also achieving an estimation of congestion
phases.

Index Terms—Smart City, Smart Port, Edge computing, Cloud
computing, Data management, ANPR

I. INTRODUCTION

Over the past decade, the pervasive deployment of Internet
of Things (IoT) devices and advances in ICT have paved the
way for the realization of large-scale Smart City scenarios [1].
Modern Smart Cities are very complex systems where human
beings play a central role and are supported while carrying
out their daily activities. Such a complexity derives from the
multitude of heterogeneous services and application contexts
that should be implemented, managed, and organized in a
seamless way for the final user. Hence, the IoT acts as an
enabling technology giving the access to the physical world,
and context awareness abilities by “sensing” the surrounding
environment [2]. In such a context, Cloud and Edge paradigms
represent two core components at the base of the Smart City
infrastructure: the former providing the computing power and
storage functionalities, the latter ensuring ubiquitous access to
services and better resource management [3].

In a Smart City context dominated by devices that exhibit
dual interaction with the physical and cyber worlds, Artificial
Intelligence (AI) is fundamental to enable a ‘“reasoning”
process, thus making these devices “active” entities equipped
with an intelligence that can be exploited to produce better
support and make autonomous decisions.

In this paper, we present the results derived from a research
activity conducted with the “Autorita di Sistema Portuale
dello Stretto” consisting in the design and implementation

of a Smart recognition system in a Ro-Pax terminal for the
evaluation of the arrivals at the infrastructure. To this aim, we
adopted a deep learning approach based on a Convolutional
Neural Networks (CNNs) model to implement an Automatic
Number Plate Recognition (ANPR) algorithm running at the
Edge that keeps track of vehicles passing through a monitored
area. This data is then passed to a Cloud based processing
system, where by means of statistical analysis tools, it is able
to compute traffic parameters such as the number of vehicles,
the time headway, and the speed, thus obtaining information
about traffic conditions in the terminal area [4]. Thanks to
this collaboration, we were able to deploy the system in a real
scenario and use it as a case study for the evaluation of the
proposed solution.

II. PROPOSED ARCHITECTURE
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Fig. 1: Proposed architecture scheme.

The Cloud-based processing system is able to perform
statistical analysis on the gathered data and provide the results
to managers in order to monitor the conditions of the whole
system.

Fig. 1a depicts the overall Cloud system architecture we im-
plemented. It is structured into several separated components,
namely: the web server, the API server, an InfluxDB instance,
a MongoDB instance, a Redis instance, and a Grafana instance.

With respect to the last one, we made it accessible from
the Internet so that the user can have access to a dashboard
showing almost in real-time a set of information like the



vehicle queuing time. With regards to the web server, it
provides the static files for the web application (also known
as the front-end Graphical User Interface) accessible from
the Internet. The API server plays a central role in our
infrastructure as it provides the back-end functionalities and
performs the statistical analysis. This server is also responsible
for providing the access to all the platform functionalities by
exposing a set of REST API interfaces. The API server is
directly connected to the databases storing users and vehicles
information together with the platform configurations.

Moreover, to increase the performance of the system, the
Redis instance is used as a cache database, to quickly provide
the data necessary for calculations. In particular, this cache
database is hosted near the API server services to reduce as
much as possible the latency in data provisioning.

The interaction between the sensors and the Cloud-based
processing system happens through the Edge computing de-
vice. Here, in fact, the cameras and the Edge device (which
is represented by a Raspberry Pi 3) are able to communicate
with the API server to update the system information and push
data to the databases.

For sake of simplicity and without loss of generality, Fig.
1b depicts the communication scheme for a single camera.
Raspberry plays a central role, acting as a bridge to interact
with the cameras. It runs also the ANPR algorithm that
will be discussed in Section III and, moreover, it is able to
communicate the data to the back-end through the API server.

III. APPLICATION

The ANPR problem has been tackled as a supervised object
detection approach, so we started collecting the video stream
captured by the cameras to build our own dataset. Such a
choice has been made to obtain the best recognition results
by training the algorithm on video frames captured directly
from the operational setting, allowing the learning of those
features that best describe our application context. After this
step, we labeled the frames by defining the Regions Of Interest
(ROIs) to be detected (i.e., the vehicle and its number plate)
and applied a data augmentation process.

Among the models available in the literature, we selected
a lighter version of the state of the art You Only Look
Once (YOLO) architecture [S] named Tiny-YOLO, which is
particularly suitable to be executed on embedded devices while
maintaining a very good level of performance.

In the first step the model takes as input the video frame
captured by cameras and generates two bounding-boxes con-
taining the ROIs, namely: the vehicle and the corresponding
number plate. The first one, it is used for statistical purposes,
as well as to count the number of vehicles passing through
the monitored ares. The second ROI relative to the number
plate is extracted from the video frame image and passed
to Tesseract, an Optical Character Recognition (OCR) tool
capable of detecting and extracting text from images.

IV. EXPERIMENTAL RESULTS

On-field data were collected during a pilot survey between
October 2020 and March 2021 and from September up to

November 2021. During calibration analyses, the sampling
was tested with the twofold objective of comparing the total
amount of detected vehicles and the quality of the data
achieved by the ANPR.

In Table I are reported the flow rate condition at the
beginning of the spill-back; the ship supply in the next 45
minutes; the number of vehicles platooning that represents the
number of vehicles arrived during the unstable flow condition;
the elapsed time to come back to the free flow conditions.

TABLE I: Queuing Phenomena

Day Start Arange Ship Supply  Platoon  Elapsed Time
(hh:mm)  (veich/min) (units) (units) (hh:mm)
28/09 13:44 1.10 - 1.30 2 45 24:40
29/09 16:59 0.95 - 1.30 3 55 01:05:27
05/10 13:12 0.95 - 1.11 3 20 18:10
— 13:57 0.52 - 0.75 2 9 05:02
— 15:21 0.31 - 0.53 2 58 33:30
— 17:18 0.51 - 0.72 2 39 39:56
12/10 17:24 0.90 — 0.95 3 56 01:09:10
03/11 15:44 1.04 - 1.20 3 72 44:04
16/11 15:28 0.55 - 1.12 3 41 29:40
— 17:38 0.67 - 1.00 2 57 29:55

The examination revealed that, during peak hours, delays
in transit operations (to have access to boarding operations)
on average do not exceed 30 minutes. Although the observed
phenomenon may occupy a larger time window, this only
manifests that the system does not have to allow the incoming
vehicle to be loaded onto the first departing ship. However,
the number of units queuing in the platoon is limited. It is
worth noting that the port terminal offers, on an hourly basis,
a load capacity ranging from 650 to more than 1300 linear
meters, corresponding to about 50 - 80 trailers. During the
day, small platoons waiting at the checkpoint were registered.
However, as also reported in the Table I, queuing phenomena
under 15 vehicles do not lead to an actual performance decay
for the terminal. Such local phenomena can be reconnected
with the interference manoeuvres in the loading/unloading
terminal area and a slight variation in the shipping companies
scheduling.

The obtained results demonstrate the effectiveness of the
proposed approach in detecting queuing phenomena and the
overall traffic conditions of the terminal. Moreover, such infor-
mation resulted fundamental for the infrastructure managers to
provide a better service to visitors.
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