
Testing Vision Neural Networks for Smart Cities
Luciano Baresi, Davide Xian Yi Hu, Giovanni Quattrocchi

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria
{name.surname}@polimi.it

Abstract—Testing vision neural networks is crucial for ensur-
ing the reliability and safety of AI-driven applications in smart
cities. We propose TestDiffusion, a novel approach combining
zero-shot learning and domain adversarial testing to efficiently
generate diverse, high-quality test cases from existing ones.
By leveraging a pre-trained diffusion model and reinforcement
learning, TestDiffusion enhances the robustness of vision NNs,
enabling better generalization to unseen urban conditions. An ini-
tial evaluation shows that TestDiffusion significantly outperforms
state-of-the-art methods, improving the reliability of AI-based
systems in the complex environments of smart cities.

I. INTRODUCTION

The rapid advancement of information technology has paved
the way for the development of smart cities, where the
integration of digital infrastructure enhances the efficiency and
quality of urban services. Central to this transformation is the
use of Artificial Intelligence (AI) and Neural Networks (NNs)
in various applications such as smart energy management, air
quality control, and public safety [1].

Vision NNs are particularly important in smart cities due to
their ability to process and interpret vast amounts of visual data
from urban environments. In the context of smart mobility,
for instance, vision NNs are crucial for tasks such as traffic
management, smart lighting, and parking space detection. The
reliability and safety of these models are key, as any failure
can lead to significant consequences, including accidents and
disruptions in urban mobility.

One of the major challenges in deploying these NNs in
real-world scenarios is their ability to generalize from the
training data to new, unseen inputs [2]. This generalization
is essential for NNs to function correctly in the diverse
and dynamic environments found in smart cities. Traditional
software testing methods fall short when it comes to evaluating
the performance of NNs due to the complexity and opacity of
the models. NNs learn from data and approximate complex
functions that are difficult to interpret, making it challenging
to determine the correct output for a given input [3]. Moreover,
obtaining test cases from different and novel domains is
usually complex and expensive, as it often requires extensive
manual data collection and labeling.

To address these challenges, this paper introduces TestD-
iffusion, a novel approach that combines zero-shot learning
and domain adversarial testing for the metamorphic testing
of vision NNs. TestDiffusion utilizes a pre-trained general-
purpose diffusion model to generate test cases using textual
prompts. Our approach is designed to efficiently transform
available test cases into novel and diverse ones, leveraging
reinforcement learning to optimize the search for the most

suitable transformations. By providing an effective and cost-
efficient solution for generating test cases, TestDiffusion aims
to help the development of safer and more dependable AI
systems in urban environments.

II. SOLUTION OVERVIEW

Prompt
change season to autumn IsValid

follow-up case input
(domain city-autumn)

source case input
(domain city-spring)

Fe
ed

ba
ck

3. Input
Validation

Image
Assessment

1. Adversarial Domain Search

Multi Armed
Bandit

Adversarial
Input Memory

4. Testing
Neural

Network

2. Image
Transformation

Instruct-
Pix2Pix

Fig. 1. TestDiffusion

TestDiffusion expects two user inputs: an existing set of
test cases (i.e., input images and the expected outputs), re-
ferred to as source cases, and a list of textual prompts that
describe the desired domain transformations. Such textual
prompts should include natural language commands (e.g.,
change season to autumn, make it rainy, make
it darker) to modify the input images. We assume these
prompts to be defined by domain experts who can encode
significant scenarios not represented in the available test cases,
tailored to the specific task at hand.

Figure 1 shows an high-level overview of TestDiffusion.
The first step of the process is the adversarial domain search
based on reinforcement learning. At each iteration (i.e., for
each test case generation), a Multi-Armed Bandit formulation
is employed to identify the transformation (i.e., the prompt)
that, when applied to a randomly selected existing test case,
is most likely to cause the NN to mispredict. The algorithm
is designed to balance the exploration of new prompts with
the exploitation of known high-reward prompts. The reward
function is calculated using three metrics: i) the effectiveness
of the generated test case (or follow-up case) in producing
erroneous outputs, ii) the diversity of the generated test case
compared to the ones generated in previous iterations, and iii)
the quality of the generated test case computed using Image
Quality Assessment [4]. To calculate the diversity among
generated test cases, our approach maintains a memory of



adversarial inputs, which aids in refining the selection process
based on feedback from previous iterations.

Once a prompt is selected, the process moves to the image
transformation stage, where InstructPix2Pix [5], a pre-trained
diffusion model, takes a randomly selected source case input
(e.g., an image in a city during spring) and the selected
prompt (e.g., change season to autumn) to generate
a follow-up case input. This transformation is designed to
create realistic images that reflect the specified changes while
maintaining the essential features of the original image (i.e.,
without changing the expected output).

Then, the newly generated follow-up case then undergoes
input validation. This stage ensures that the transformed im-
age meets predefined quality criteria discarding unrealistic or
low-quality transformations. After validation, the remaining
follow-up cases are used to test the NN. This testing phase
evaluates the NN’s performance on the new inputs, identifying
any potential faults or weaknesses in its ability to generalize
across different scenarios. The results of this testing provide
feedback that is used to refine the adversarial domain search,
improving the selection of prompts in the next iterations.

This process is repeated multiple times, until the desired
amount of test cases is generated.

III. PRELIMINARY RESULTS AND CONCLUSIONS

We conducted an initial evaluation to demonstrate the
effectiveness of TestDiffusion compared against two state-of-
the-art approaches: FGSM (Fast Gradient Sign Method) [6]
and CycleGAN [7]. The former is a gradient-based adversarial
attack approach that perturbs input images by adding small,
intentional noise to maximize the NN’s prediction error. The
latter generates new test cases using Generative Adversarial
Networks (GANs) that are tailored to a single specific trans-
formation (i.e., adding rain to an image).

From a qualitative perspective, gradient-based approaches
like FGSM allow testing the robustness of NNs by introduc-
ing small or even imperceptible perturbations that maximize
prediction errors. However, they do not test NNs in different,
varied real-world scenarios as TestDiffusion does. GAN-based
approaches, such as CycleGAN, require training separate
models for each transformation, making it cumbersome to
support multiple transformations. In contrast, TestDiffusion
exploits a pre-trained model that allows for any transformation
to be applied via text prompts, providing a more versatile and
efficient method for testing NNs across diverse scenarios.
Experiments setup. To compared the solutions also from a
quantitative point of view, we run a set of experiments on
a machine with a 32-core AMD R9 5950X processor, 64 GB
RAM, and an Nvidia 4090 GPU. The evaluation used a dataset
on autonomous driving, being one of the most prominent
use cases of vision NNs for smart cities, extracted from an
extended Udacity simulator [8], containing 281, 930 images
with steering angles. We tested the approaches on different NN
architectures, namely, DAVE-2 [9] and three Resnet variants:
Resnet-18, Resnet-34, and Resnet-50. We used 178 prompts for

TABLE I
COMPARISON.

Approach Detected Faults (%) S-Faults (%) L-Faults (%)
TestDiffusion 79.87% 24.01% 53.88%
FGSM 66.20% 41.34% 24.86%
CycleGAN 68.95% 33.21% 35.74%

TestDiffusion to modify the source images, altering characteris-
tics like time of day, weather, road conditions, and background.
Results. Table I presents the performance comparison of
TestDiffusion against FGSM and CycleGAN, averaged across
the different NN models. We employed three main metrics:
i) Detected Faults, the % of generated test cases where the
NN produced incorrect outputs, ii) S-Faults, the % of test
cases with minor prediction errors, and iii) L-Faults, the % of
test cases with substantial prediction errors that could cause
significant real-world failures.

Results show that TestDiffusion outperforms both FGSM
and CycleGAN. On average, TestDiffusion detected faults
in 79.87% of the generated test cases, while FGSM and
CycleGAN detected faults in 66.20% and 68.95% of the cases,
respectively. This indicates that TestDiffusion is more effective
at uncovering potential issues in NNs. TestDiffusion generates
test cases that lead to higher L-Faults (53.88%) and lower S-
Faults (24.01%). FGSM, probably due to the small applied
perturbations, detected more small faults (41.34%) than large
ones (24.86%). CycleGAN produced more balanced results,
with 33.21% S-Faults and 35.74% L-Faults.
Conclusions. Testing NNs is crucial in smart cities to ensure
the reliability and safety of AI-driven applications. Overall,
these initial results demonstrate that TestDiffusion provides a
comprehensive and effective testing approach, enhancing the
robustness and reliability of vision NNs across diverse and
challenging scenarios.

REFERENCES

[1] Z. Allam and Z. A. Dhunny, “On Big Data, Artificial Intelligence and
Smart Cities,” Cities, vol. 89, pp. 80–91, 2019.

[2] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “ Exploring
Generalization in Deep Learning,” in Advances in Neural Information
Processing Systems 30, 2017, pp. 5947–5956.

[3] D.-X. Zhou, “Universality of Deep Convolutional NNs,” Applied and
computational harmonic analysis, vol. 48, pp. 787–794, 2020.

[4] S. Kastryulin, J. Zakirov, D. Prokopenko, and D. V. Dylov, “PyTorch
Image Quality: Metrics for Image Quality Assessment,” CoRR, vol.
abs/2208.14818, 2022.

[5] T. Brooks, A. Holynski, and A. A. Efros, “InstructPix2Pix: Learning to
Follow Image Editing Instructions,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2023, pp. 18 392–18 402.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” in Proc. of the Int. Conference on Learning
Representations, 2015.

[7] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks,” in Proc. of
the Int. Conference on Computer Vision, 2017, pp. 2242–2251.

[8] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour predic-
tion for autonomous driving systems,” in Proc. of the Int. Conference on
Software Engineering, 2020, pp. 359–371.

[9] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba, “End to End Learning for Self-Driving Cars,” CoRR, vol.
abs/1604.07316, 2016.


