
UniCas for Industry
L. Ferrigno, L. Milano, M. Molinara, H. Mustafa, A. Miele

Dept. of Electrical and Information Engineering
University of Cassino and Southern Lazio

Cassino, Italy
{ferrigno; filippo.milano; m.molinara; hamza.mustafa, alessio.miele}@unicas.it

Michele Vitelli
Sensichips srl
Aprilia, Italy

michele.vitelli@sensichips.com

Abstract—Artificial Intelligence (AI) is transforming indus-
tries, particularly through Industry 4.0, by integrating technolo-
gies such as the Internet of Things (IoT) to optimize production
processes and resource management. It addresses challenges
such as reducing environmental impact while fulfilling consumer
demands. Innovative sensors enable real-time data collection for
environmental monitoring. This paper presents three experiences
suitable for applying machine learning in smart cities for sensor
data interpretation: air and water pollutant detection and state
of charge estimation of Li-Ion batteries.

Index Terms—Artificial Intelligence, Industry 4.0, Smart Sen-
sors, Pollutants Identification, State of Charge estimation

I. INTRODUCTION

Artificial Intelligence (AI) transforms sectors like health-
care, finance, education, transportation, and industry by an-
alyzing vast data sets in real-time and generating precise
predictive insights. Industry 4.0 marks a pivotal shift in indus-
trial evolution, emphasizing ”smart factories” where machines,
systems, and people are interconnected via IoT, AI, big data,
cloud computing, and advanced robotics.

Industry 4.0’s [1] automated and connected production op-
timizes processes through real-time machine communication.
Innovative sensors are key in collecting detailed, real-time
environmental and operational data. AI analysis of sensor
data benefits industries by identifying pollutants, monitoring
air and water quality, and optimizing processes to reduce
environmental impacts.

In the automotive sector, the shift towards sustainable mobil-
ity is driven by energy cells, especially lithium-ion batteries,
which are crucial for zero-emission vehicles. Understanding
parameters like range, energy density, charging time, and
durability is vital for developing large-scale zero-emission
vehicles and ensuring proper disposal and reuse.

Upcoming sections discuss Machine Learning (ML) ap-
plications in industrial challenges, focusing on detecting air
and water pollutants and estimating the State of Charge in
automotive applications [2]–[4].

II. POLLUTANT IDENTIFICATION IN AIR

Our recent study presents a novel system combining sensor
technology and machine learning to detect and classify air con-
taminants affordably and effectively. Existing solutions face
challenges in size, cost, and complexity. Our system addresses

Identify applicable funding agency here. If none, delete this.

these issues using a sensor array that includes aluminum oxide
for VOC detection, a commercial capacitive humidity sensor,
and a graphene-functionalized sensor for pollutant sensitivity.

Fig. 1. The proposed integrated system. SDM stands for SENSIPLUS Deep
Machine.

The system integrates with the SENSIPLUS platform for
precise electrical impedance measurements. Key components
include the SENSIPLUS Chip (SPC), developed by Sensichips
s.r.l. and the University of Pisa, and the SENSIPLUS Deep
Machine (SDM) for data acquisition and analysis. Machine
learning models like MLP, CNN, and LSTM were trained on
sensor data to classify contaminants with over 75% accuracy,
although some substances like acetone and alcohol were more
challenging to distinguish [5].

Our methodology simulated indoor air conditions to gen-
erate comprehensive sensor data. The system optimizes low-
power operations suitable for IoT applications, ensuring practi-
cal deployment. Future enhancements include integrating more
sensor types, exploring advanced ML models, and developing
real-time monitoring capabilities. Our study highlights the
potential and challenges of sensor-based, AI-integrated air
quality monitoring systems, contributing to more accessible
and accurate environmental monitoring solutions.

III. POLLUTANT IDENTIFICATION IN WATER

Detecting illegal pollutants in wastewater is crucial for
public health. We propose an IoT-ready node for sensing,
processing, and transmitting wastewater pollutant data using
the Smart Cable Water (SCW) system with SENSIPLUS chip
sensors. The system employs impedance spectroscopy for pol-
lutant detection and machine learning for data processing on
a low-cost Micro Control Unit, enhancing anomaly detection
and classification accuracy.

The SCW system, developed by Sensichips s.r.l., uses
InterDigitated Electrodes (IDEs) coated with various metals



Fig. 2. Identification system architecture.

to detect pollutants in Synthetic WasteWater (SWW), which
simulates real sewage conditions. Fourteen substances were
tested and divided into target pollutants and outliers. Sensor
data, including resistance and capacitance measurements, is
preprocessed and analyzed through a Finite State Machine
(FSM) to ensure accurate classification.

The classification process involves two phases: data pre-
processing and classification. Preprocessing normalizes sensor
data and establishes a baseline, while the classification phase
uses anomaly detection and optimized KNN models to identify
substances. Combining anomaly detection with a multiclass
classifier improved accuracy, achieving a 79.4% success rate
in identifying pollutants, though some outliers like sodium
hypochlorite were misclassified [6].

IV. OPTIMIZATION OF BATTERY STATE OF CHARGE
ESTIMATION

Accurately monitoring the State of Charge (SoC) is essential
for estimating battery life and controlling temperature. Tradi-
tional methods like Coulomb counting and Open Circuit Volt-
age (OCV) face challenges such as measurement inaccuracies,
especially in battery types like Lithium Iron Phosphate (LFP)
where the voltage-SOC relationship is flat. Electrochemical
Impedance Spectroscopy (EIS) offers promise but has long
measurement times. This study proposes a method to reduce
measurement time while ensuring precise SoC estimation,
focusing on EIS and knowledge-based SoC classification.
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Fig. 3. The proposed method workflow.

The approach involves several steps depicted in Figure 1.
First, design parameters and constraints are identified, includ-
ing SoC estimation resolution, target measurement time, ac-
curacy goals, battery type, and classifier selection. The device
under test is then characterized to meet stringent performance
parameters. A classifier is chosen based on accuracy metrics
and integrated into a feature selection algorithm. The final
stage optimizes feature selection using search algorithms to
minimize measurement time while maintaining accuracy above
specified targets.

In this work, SoC estimation is approached with 10-class
classification models, each representing a 10% interval of SoC.
Data includes impedance features (28 parameters across real
and imaginary parts at various frequencies) from Nyquist plots
of battery cells at different SoCs. Optimization algorithms,
specifically Particle Swarm Optimization (PSO), identify op-
timal frequencies for impedance measurement via EIS, bal-
ancing accuracy and measurement time using a supervised
learning model. This case study demonstrates a systematic
approach to enhancing SoC estimation efficiency using EIS
and structured optimization techniques, which are crucial for
advancing battery management technologies [7].
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