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Abstract—Applying novel technologies to the cultural heritage
field allows its enhancement by improving the user’s cultural
experience or guaranteeing a better preservation of cultural
assets. This work introduces an architecture for cultural heritage
maintenance based on data-driven and physics-based approaches.
In particular, the architecture is composed by four layers taking
care of the acquisition of data from sensors, the management of
three-dimensional models, the storage of collected data, its elabo-
ration, and the provision of services to expert users in the cultural
heritage maintenance field. The elaboration phase exploits 3D
geometries related to cultural assets and analyzes mathematical
models based on Partial Differential Equations by employing
collected data and Physics-Informed Neural Networks (PiNNs)
or Finite Element Methods (FEM) strategies. In particular, the
application of PiNNs, based on the package PINA, improves the
efficiency of the architecture.

Index Terms—Cultural Heritage, Physics-Informed Neural
Networks, Partial Differential Equations, Maintenance

I. INTRODUCTION

Cultural heritage represents a significant testing field for
novel technologies by improving the enjoyment of cultural
heritage and conserving cultural assets [1]. In particular,
cultural heritage preservation requires the application of sev-
eral technologies related to the digitalization of assets, their
monitoring, and prediction techniques for understanding and
preventing possible damages.

Therefore, this work aims to introduce an architecture for
cultural heritage maintenance based on the analysis and the
acquisition of 3D models of cultural assets, the integration
of sensors for the comprehension of effects related to their
environment, and the exploitation of mathematical models to
make reliable prediction about future possible deteriorations.

The architecture consists of four functional layers: the
Data Acquisition Layer, the Knowledge-Base Layer, the In-
ference Engine Layer, and the Application Layer. The Data

Gianluigi Rozza

Beatrice Paternoster
DIPMAT
University of Salerno
Fisciano (SA), Italy
beapat@unisa.it

Giovanni Pagano
DIPMAT
University of Salerno
Fisciano (SA), Italy
gpagano @unisa.it

Carmine Valentino
DIIN
University of Salerno
Fisciano (SA), Italy
cvalentino @unisa.it

Acquisition Layer exploits the Internet of Things [1] for
acquiring data related to the environmental situation in which
the cultural assets stay. Therefore, the layer requires several
typologies of sensors to obtain temperature, air quality, move-
ments by accelerometers, and all environmental conditions
that can affect indoor or outdoor assets. The Acquisition
Layer focuses on integrating 3D models related to cultural
assets. This layer combines classical mesh-based approaches
with mesh-free ones to guarantee architectural flexibility. The
Knowledge-Base Layer takes advantage of a database stor-
ing structured and semi-structured data coming from sensor
acquisitions together with significant information about the
models. Moreover, this layer includes pre-processing strategies
for preparing data for the elaboration phase. The Inference
Engine Layer presents The Model Elaboration Module, the
PINA Module, and the FEM Module. The Model Elaboration
Module elaborates on information from the 3D geometries for
acquiring points related to the analysis through mathematical
models. This Module exploits classical mesh-based approaches
by automatically generating a discrete representation of the
cultural asset. This mesh constitutes the computational domain
on which the PINA Module or the FEM Module will elaborate
the predictions. Moreover, the Model Elaboration Module also
integrates approaches for avoiding the creation of cultural asset
mesh, speeding up the elaboration process regarding the PINA
Module. The PINA Module employs Physics-Informed Neural
Networks (PiNNs) [2], an unsupervised Scientific Machine
Learning approach to solving Partial Differential Equations
(PDEs). This Module takes advantage of the package PINA
[3]. In particular, PINNs exploit the ability of neural networks
as universal approximators for identifying the function able
to minimize the residual, boundary conditions, and initial
conditions related to the PDE analyzed. In the literature, there



is a significant interest in these approaches and a widespread
effort for improving these solvers. Specifically, PINN requires
improvements for managing two issues: unbalanced losses [4]
and causality [S]. The loss imbalance refers to cases in which
the magnitude of losses for reducing residual, boundary con-
ditions, and initial conditions are different, compromising the
ability of the Neural Network to learn uniformly. Therefore,
the PINA package includes several solvers to overcome this
specific issue. Instead, the improvement of causality allows
PiNN to handle time-dependent problems more consistently.
The proposed architecture improves this issue by applying
a novel approach by including numerical methods to semi-
discretize the problem in time [6]. In particular, the proposed
approach presents several advantages concerning the classical
Time-Discrete PiNNs approaches. Finally, the FEM Module
represents an alternative to the PINA Module and exploits the
mesh created by the Model Elaboration Module for solving
the PDE. The application of the FEM Module is less effi-
cient with respect to the PINA Module, but it benefits from
more interpretable numerical investigations. The last layer is
the Application Layer, which allows the introduction of the
elaborations made by the Inference Engine Layer to expert
users by visualizing simulations.
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