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Abstract—In a multi-cloud environment, the placement of
microservices is crucial and may be subject to data constraints.
Data could be anchored to some environments due to regulatory
compliance, data sovereignty issues, or performance optimization.
This enforces specific placement strategies to obtain good per-
formances and scalability. In this extended abstract, we propose
the adoption of the WL-A model expanded with the inclusion of
anchors for implementing a data-centric placement strategy. The
results show how limited data movements improve performance
in terms of response times.

Index Terms—service architecture, microservices, multi-cloud,
placement, performance.

I. INTRODUCTION

In distributed systems, especially on large-scale ones such
as smart cities, the amount of data generated and managed
grows exponentially. This phenomenon is due to the growing
number of sensors, actuators, and services offered by cities.
This is leading to significant improvements in the computing
and storage facilities, with large investments on in-memory
computing. This shift is introducing a new problem in dis-
tributed applications: when a large amount of data is collected
by some nodes in the system, performing computation on these
data by moving them to the execution environments of the
interested services is infeasible. However, even in the case of
a smaller amount of data, moving them could be difficult due
to possible policy constraints, such as data privacy.

Smart waste management bins that gather data to optimize
collection routes, smart meters for energy management that
monitor consumption, and hospitals that need to store and keep
private patients data are some examples of applications that
may need to prevent transferring personal data among different
authorities.

In this work, we propose a technique that exploits the
concept of communication intensity to maximize the locality
between services and data stores that compose a distributed
application, with the constraint of data stationarity. The idea
is to anchor microservices to data by assuming that the latter
can not be moved in some cases. To get information about
communication intensity, we exploit the Workload Application
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(WL-A) Model [1] (a runtime graph model of a distributed
system) that captures system microservices’ interactions with
their intensity, extended to consider also the interactions
between services and DBMSes.

The proposed approach includes and extends the Data
Gravity [2] concept, i.e., the phenomenon where large datasets
attract applications, services, and other data, making it more
efficient to process data close to where it is stored. As data
accumulates, it creates a “gravitational” pull that encourages
the colocation of applications and services to reduce latency,
minimize data transfer costs, and improve performance. Dif-
ferent from Data Gravity, which assumes a static-defined at-
traction force, adopting the WL-A model captures the dynamic
nature of modern applications by changing the link intensity
according to a specific workload.

In an ideal context with virtually unlimited hardware re-
sources, the optimal solution for reducing communication
costs would involve “annihilating” all services and data into
a single environment. However, this is unfeasible in real-
world settings due to hardware limitations, requiring a careful
approach in microservice placement taking into account data
anchoring, i.e., we aim at reducing communication costs
towards anchored data and related microservices considering
the resource constraints imposed by the environment hosting
the data. This extended abstract presents a preliminary solution
based on greedy algorithms and the related results.

II. DATA-ANCHORED PLACEMENT

Starting from the WL-A graph model (considering mi-
croservices and databases as nodes and interaction between
them as weighted directed edges, the weights are related to
a reference workload), we introduce a new graph component
called “anchor”.

Definition 1. Given a directed weighted graph G = (V,E,w),
where V is the set of vertices, E is the set of edges, and w :
E → R is a weight function that assigns a weight to each edge,
an anchor a is defined to incorporate a subset of leaf nodes and
edges linked to a certain execution environment. The anchor
a can be formally defined as a tuple (L,EL,Wincident(L)).
L ⊆ V is the set of leaf nodes incorporated into the anchor.
EL ⊆ E is the set of edges incident to any node in L: EL =



{(p, l) ∈ E|l ∈ L}. Wincident(L) is a function that maps each
parent node p to a sum of weights of edges starting from p
and incident to nodes in L, calculated as:

Wincident(L) =

p←
∑

(p,l)∈EL

w(p, l) | p ∈ P (L)

 (1)

where P (L) = {p ∈ V | (p, l) ∈ E for some l ∈ L} is the set
of parent nodes connected to the leaf nodes in L. In this way,
the edges directed to anchors are merged by the parent.

Leveraging this definition, we created a graph that extends
the WL-A model to include anchor elements, i.e., nodes that
work as attractors and can not be moved from their hosting
environments.

A. Greedy Algorithm for Community Detection

Using the intensity between nodes, we apply a greedy algo-
rithm to insert the microservices with the strongest attractive
force into the anchor community. Starting from this newly
constrained WL-A graph, the algorithm assigns nodes to form
communities, beginning with the anchor nodes.

The algorithm’s initial step assigns an anchor to each
community:

Ca = {a} ∀a ∈ A, (2)

where A is the set of anchors. Until all nodes in V are
assigned, it searches, for an edge e = (v, c), directed from v to
c, where c is a node that belongs to a community while v does
not belong to a community. The greedy algorithm searches
for the e with the highest value of w and assigns v to the
community of c:

Ca ← Ca ∪ {v}. (3)

At the end of this first step, if there are any leaf microservices,
they are assigned to the community they most heavily invoke
(indicated by directed edges from the community to the leaf
node). The result is a set of communities {Ca | a ∈ A}, where
each community Ca includes an anchor node and other nodes
attracted by it.

III. EXPERIMENTATION

To test our approach, we used the TrainTicket1 benchmark
application, consisting of 36 services and 20 databases. We
computed the WL-A model by submitting a reference work-
load (Wr) with 20 concurrent users to the application deployed
in a single execution environment (a VM with 48 vCPUs,
120GB of RAM, and 400GB of disk storage). Then, we
collected and processed the execution traces with the pipeline
of the previous work [1] to obtain the graph model. This graph
contains the weighted interaction among services and also
considers DBMSes. Hence, we divided the databases into 4
groups; each group is an anchor a to deploy into a dedicated
virtual machine (VM); this way, each machine will host a

1https://github.com/FudanSELab/train-ticket

single Ca. VMs are configured with 12 vCPUs, 32GB of RAM
and 100GB of disk storage.

Fig. 1 shows the extended WL-A model with the anchors
and their relationships with services using Eq.(1). The color
of the nodes refers to the community Ca linked to a given
anchor, obtained by applying our greedy algorithm.
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Fig. 1. Extended WL-A Model and its clustering based on the greedy
community detection algorithm.

To evaluate our greedy-based placement proposal (PG), a
comparison was made with a placement proposal that, using
the same anchors, randomly distributed the related services
(PR). We injected (Wr) into the application deployed accord-
ing to both placement proposals, and then we collected the
response times of endpoints.

Fig. 2. Median response times of the slowest 15 endpoints.

Fig. 2 shows the median response times of some of the
slowest operations for PR and PG. In almost every case, there
is an improvement in response times in the case of intensity-
driven anchor-based placement. The overall improvement is
∼ 25% considering all the operations. About the slowest three
endpoints, the improvement is higher than ∼ 54% endpoint.
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