
Migrating Kubernetes Pods Among Geographically
Distributed Edge Clusters of a Smart City

Leonardo Poggiani, Carlo Puliafito, Antonio Virdis, Enzo Mingozzi,
Department of Information Engineering, University of Pisa, Pisa, Italy

I. INTRODUCTION

Edge computing complements the cloud by providing cloud-
like services in close proximity to the final users. An edge
computing system is composed of several edge clusters (a.k.a
micro data centers) that are widely distributed over a geo-
graphical area and located in proximity to access networks or
within the core network of the telco operator. Each edge cluster
comprises one or more edge servers exposing services to the
final users. Due to its proximity to users and clients, edge
computing is a key enabler of Smart City applications (e.g.,
smart vehicles and traffic management, augmented/virtual re-
ality, emergency applications) having stringent requirements
in terms of latency, throughput, and privacy.

In an edge-computing system, an edge service may need
to dynamically migrate between geographically distributed
clusters. Migration lets the service retain its internal runtime
state (e.g., session state of a client, progress of a machine-
learning inference) and continue its execution on the des-
tination cluster. Service migration proves useful in several
scenarios. For instance, it may be leveraged when one wants
to perform cluster maintenance or when there is the need
to minimize energy consumption in the edge system. More
importantly, service migration may help to preserve proximity
between the service and its mobile client. Let us consider the
following use case, which is depicted in Figure 1. A drone for
last-mile delivery traverses a Smart City, moving toward the
recipient of the parcel. Along the path, the drone periodically
streams video frames of the surrounding environment to a
flight-assistance edge service (blue line in figure). This is in
charge of detecting objects in video frames and alerting the
drone whether it is approaching an obstacle, hence allowing
the drone to avoid it. To this purpose, the edge service has
to maintain a state related to a window of last processed
frames. As shown in figure, when the drone changes point
of access to the network, it may get topologically far away
from its edge service (dashed blue line). As a result, the
service migrates to a different edge cluster. After migration,
communication between the two endpoints benefits again from
proximity between the two (green line). Migrating an edge
service between clusters requires to establish a relationship
between the clusters as well as a workflow to collect service
state, transfer it and use it to restore service execution at
destination.

This extended abstract provides a general overview of a
workflow that we presented in [1] for migrating Kubernetes
Pods between geo-distributed Kubernetes clusters. Kubernetes

is the de-facto standard for automating service orchestration.
In Kubernetes, a Pod represents a service instance. Each Pod
may be a single container, namely an executable software unit
packaging application code and its dependencies. Nonetheless,
a number of design patterns allow a Pod to be the compo-
sition of multiple, tightly coupled containers. In this case,
the main container runs the application logic while the other
container(s) provides additional functionalities (e.g., logging,
proxying) without the need to modify the main application
code.

Our migration workflow presents the following key charac-
teristics, which distinguish our solution from related works in
the field:

• It migrates both single-container and multi-container
Pods;

• It transfers the checkpoint (i.e., service state) directly
between edge clusters, hence avoiding to rely on an inter-
mediary node. Any triangulation would indeed have non-
negligible impact especially in edge computing, where
edge servers are geo-distributed;

• It relies on standard Kubernetes API and can be therefore
used with any vanilla Kubernetes installation.

II. THE PROPOSED MIGRATION WORKFLOW

Figure 2 depicts our proposed workflow to migrate a Kuber-
netes Pod from a source cluster to a destination one. The figure
highlights the components involved (in blue) and the sequence
of steps covered (in green). In step 1 , a LiveMigration
Kubernetes object of our design is created on the source
cluster, which indicates that Pod migration is needed. A Source
Migration Operator (SMO) of our design detects this event
and starts the migration workflow. Firstly (see step 2 ), the
SMO establishes a peering relationship between the involved

Cluster 1

Cluster 2

Cluster 3

Client mobility

Service migration

Fig. 1. A service-migration use case to support client mobility.



destination clustersource cluster

Liqo peering +
offloading

checkpoint saving

file handler

shadow
service

service

source 
migration operator

 Pod
checkpointing

checkpoint
transfer

checkpoint transfer

notification of
dummy-file creation

destination
migration operator

checkpoint.tar

restored pod

LiveMigration object

Pod
deletion

Pod restore

pod

4a

3

4b

4a

2

7

5

creation of custom object1

namespace

offloaded namespace
6

Fig. 2. The proposed migration workflow.

clusters, which is needed later to directly transfer service
checkpoint between them. To create such a bond between
clusters, the SMO leverages Liqo1. This is a tool, developed
at the Polytechnic University of Turin, for establishing a
lightweight federation among Kubernetes clusters. Through
Liqo, a destination (or provider) cluster can expose all or part
of its resources to a source (or consumer) cluster. By means of
a virtualization layer, the source cluster views such resources
as internal and can therefore use the standard Kubernetes API
to offload Kubernetes objects of any kind to those resources. In
particular, in our work we exploit Liqo to offload a Kubernetes
NodePort service to the destination cluster. Once the NodePort
service is offloaded, Liqo creates a shadow copy of said service
on the source cluster, which allows any component on that
cluster to send packets to the offloaded service. Thanks to
Liqo and the offloaded NodePort service, the SMO may send
the service checkpoint directly to the destination cluster, once
the checkpoint is collected.

When the NodePort service is offloaded, a custom controller
(not shown in figure) in the destination cluster detects this
event. In response to this, the controller creates two Pods
at destination. One is a file-handler Pod, which is in charge
of receiving the checkpoint, once this is transferred. The
other Pod is the Destination Migration Operator (DMO),
which instead has the role of restoring Pod execution on the
destination cluster.

In step 3 , the SMO starts the checkpointing operation.
If the Pod includes multiple containers, one checkpointing
is performed for each container. Container checkpoints are
started in parallel to one another. This guarantees consis-
tency among containers, by minimizing the chances that
a container fails when trying to interact with another one
that has been already checkpointed and therefore stopped.
To request a checkpoint, the SMO sends a POST request
to the /checkpoint/{namespace}/{pod}/{contai-
ner} path exposed by the Kubelet. In Kubernetes, the Kubelet
is the management component deployed on each worker node
of a cluster. Once the Kubelet receives a checkpoint request,
it interacts with the underlying container runtime to perform
the task. The container runtime is enabled with support to
Checkpoint/Restore in Userspace (CRIU), namely the actual
tool conducting checkpoint and restore of containers. The

1https://liqo.io/

produced container checkpoint is a .tar archive including
the container image and the container runtime state. The
checkpoint(s) is saved on a persistent volume mounted by the
SMO.

In step 4a , the SMO transfers the checkpoint(s) in parallel
to the destination cluster. For the purpose, it leverages the
NodePort service that was offloaded through Liqo in step
2 . Specifically, for each checkpoint, the operator interacts

with the shadow copy of the NodePort service by issuing a
POST request to http://{serviceIP}:8080/upload.
Hence, checkpoint data flows through the shadow copy and
reaches the NodePort service at destination. When all check-
points are transferred, the SMO creates a dummy file and
sends it to indicate that checkpoint(s) transfer is completed. In
step 4b , the SMO requests Pod deletion at source. This step
may be performed in parallel to step 4a or be postponed.
However, it must always take place before restoring the Pod
at destination.

The file-handler Pod receives the .tar checkpoint
archive(s) and the dummy file. In step 5 , the file-handler
Pod writes the received content to a persistent volume that
is mounted by both the file-handler Pod and the DMO. Our
DMO waits for the creation of the dummy file, which informs
that checkpoint transfer is over, and in step 6 it is notified of
this event. Therefore, in step 7 the DMO begins the restore
operation. For each of the Pod containers, the DMO builds an
executable container image from the .tar archive containing
the checkpoint. Then, it requests the Kubelet to restore the Pod
using those images. However, note that the Kubelet exposes no
restore-specific API, unlike the checkpoint case. Instead, the
DMO first sends a request to the Kubelet to create a container
from each generated image. When all containers are created,
the operator asks the Kubelet to start a Pod composed of those
containers. Our proposed workflow finishes when the restored
Pod successfully runs at destination.

We implemented a Proof-of-Concept (PoC) of our solution,
which is available on GitHub at https://github.com/
Unipisa/Pod-migration.

REFERENCES

[1] L. Poggiani, C. Puliafito, A. Virdis, and E. Mingozzi, “Live migration of
multi-container kubernetes pods in multi-cluster serverless edge systems,”
in IEEE 1st International Workshop on Serverless at the Edge (SEATED
2024) co-located with the IEEE 33rd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC 2024), 2024.

https://github.com/Unipisa/Pod-migration
https://github.com/Unipisa/Pod-migration

	Introduction
	The proposed migration workflow
	References

