
Operation continuity in smart cities with an
Edge-Cloud framework

Carmine Colarusso
Dept. of Engineering
University of Sannio

Benevento, Italy
ccolarusso@unisannio.it

Ida Falco
Dept. of Engineering
University of Sannio

Benevento, Italy
i.falco@studenti.unisannio.it

Eugenio Zimeo
Dept. of Engineering

University of Sannio and CINI
Benevento, Italy

zimeo@unisannio.it

Abstract—This extended abstract introduces an Edge-Cloud
framework designed to migrate Cloud applications towards Edge-
Cloud with the aim of reducing latency and ensuring operation
continuity even during network interruptions. The approach has
been evaluated using an IoT application that simulates intensive
tracking activity from multiple retail shops.

Index Terms—IoT, operation continuity, consistency, Edge-
Cloud continuum.

I. INTRODUCTION

Cloud computing is a very effective paradigm for easily
and consistently sharing the state of a client/server application
among numerous geographically distributed clients. However,
its usage can cause high communication latency, bandwidth
consumption, and operational discontinuity in the event of
network failures. This is particularly felt in the context of
Internet of Things (IoT) data-intensive applications, where
devices generate vast amounts of data that require timely
processing and analysis. In smart cities, this need is amplified
as numerous interconnected devices continuously monitor and
manage urban infrastructure, traffic, public safety, and environ-
mental conditions. Network interruptions in such scenarios can
severely impact real-time decisions and seamless operation of
city services. Therefore, ensuring robust data processing and
analysis despite network disruptions is crucial for maintaining
the efficiency and reliability of smart city applications.

While Edge computing can reduce latency and bandwidth
consumption, its naive adoption is unsuitable for ensuring state
consistency, especially when a significant number of Edge
nodes hosting a replicated portion of an application database
are deployed. To ensure consistency, state modifications on
one node must be promptly propagated to all other nodes. This
requires sophisticated consistency models and synchronization
protocols that balance real-time data access with network
reliability and performance limitations.

Fig. 1 shows possible interaction scenarios with the appli-
cation logic. The first case depicts a network failure in a full
Cloud application that does not adopt failover mechanisms.
In this case, network failures can lead to delays, packet
loss, and increased latency, resulting in the unavailability of

This work has been partially supported by the SISMA (SolutIonS for
engineering Microservices Applications) project funded by the Italian Ministry
of University and Research [grant number 201752ENYB 002].

 Network
 redundancy

 Edge-based
 redundancy

 No
 redundancy

Network switching

Strong consistency recovery

Network failure Network restore

System unavailable
System available with eventual consistency Secondary network
System available with strong consistency

Fig. 1. Network failure countermeasures

the whole system. The second case shows the adoption of
an emergency network. However, the backup network could
exhibit lower quality due to cost constraints, impacting the
system’s performance until the primary is restored. The last
case shows a solution based on the Edge-Cloud continuum
[1]. This solution reduces latency and protects the platform
from network communication discontinuities. In this case, the
system degrades consistency semantics until communication
to the Cloud is restored, as for PACELC theorem [2].

According to the third scenario, we propose a framework to
reorganize Cloud applications in a distributed and decentral-
ized context, such as a smart city. The framework exploits the
write-ahead logging pattern and event-driven communication
to ensure that the state of the different Edge nodes is consistent
so that any replicas can be used without loss of consistency.

II. EDGE-CLOUD CONTINUUM FRAMEWORK

By mirroring the application logic and data of an IoT appli-
cation, already deployed in the Cloud, to the Edge, we expand
the scope of Edge computing. Through data replication, we
ensure that each Edge node can seamlessly access the needed
data through an application logic proxy.

However, data replication may cause inconsistencies due
to decentralized and concurrent transactions. To avoid this
problem, the framework provides a reconciliation layer that
lies in the Edge-Cloud continuum [3].

It is composed of: Reconciliation Agent, present on each
Edge node, and a Reconciliation Manager in the Cloud, as

Area2 AreaNArea1

API

Edge

Edge-Cloud
continuum
framework

Cloud

IoT
devices

Reconciliation
Agent

API

Reconciliation
Agent

API

Reconciliation
Agent

API

Reconciliation
Manager

Fig. 2. Methodology overview

shown in Fig. 2. Every change operation that is performed on
an Edge node must be intercepted and replicated on every other
node to maintain a consistent state everywhere. When a client
performs an operation on an Edge node, the Reconciliation
Agent promotes write operations locally, leveraging event-
driven log writing and propagation techniques. In this way, the
operation will be visible to the Reconciliation Manager in the
Cloud, who receives log updates and arbitrates transactions. At
the same time, the Reconciliation Agents of the other nodes
are responsible for retrieving the log entries in the Cloud, to
synchronize their status. The other node could accept the new
status if it does not conflict with his copy and send an outcome
message to the Reconciliation Manager. This, in turn, will
check the messages received from the different nodes and will
be responsible for updating the authoritative statement in the
Cloud and informing the nodes of the possibility of closing
the transaction (accepting it or rolling it back).

During the reconciliation phase, the state of the different
Edge nodes is marked as transient, but it is accessible with a
relaxed level of consistency. Finally, strong consistency will
occur during the last reconciliation phase, when the transaction
is closed by the Reconciliation Manager.

III. FRAMEWORK EVALUATION

We tested our framework by exploiting a cluster of server
machines managed and virtualized by OPENSTACK. With this
IaaS software, we created a cluster of VMs. One VM is
devoted to all the microservices and data stores that constitute
the Cloud and the Reconciliation Manager. Each Edge node
has a dedicated VM to host the replicated logic, data, and
microservices that compose the Reconciliation Agent. The
application logic simulates the tracking activity of a retail shop
with massive data production and communication.

A. Test Results

Among various tests, we simulated the disconnection of one
of the Edge nodes from the Cloud to observe the operational
continuity perceived by users when transient failures occur. In
this scenario, the system can operate locally on the data, which

will be reconciled as soon as the network is re-established, thus
ensuring only eventual consistency during connection failure.
Upon the connection re-establishment, we assessed the time
needed for the reconciliation mechanism to restore consistency
throughout the system.

We performed a single-user test with 3 Edge nodes and a
sequence of 125000 requests. After 90 seconds of load testing,
we simulated a network failure by injecting a fault. The Read
operations could be carried out with a guarantee of eventual
consistency, while Create, Update, and Delete operations could
be carried out locally and queued to be propagated as soon as
the network is restored (this happens after 180 seconds from
the beginning of the test). We used a network with 30 ms of
latency (RTT) for this test. With this configuration, the time
to obtain strong consistency is about 120 ms, while the time
for the local read and write operations is about 10 ms. The
response time for a full Cloud application is about 35 ms (due
to network latency), which shows the solution’s benefits.

Fig. 3. Operation continuity results

Fig. 3 shows the throughput in different working conditions.
The baseline throughput (purple line) observable with the full
Cloud solution during the network failure drops to 0, causing
unavailability. The figure also shows the throughput for the
read (green line) and write (blue line) operations in the Edge-
Cloud solution; these remain unchanged during the network
disconnection because they are performed locally. To achieve
strong consistency, the Cloud needs to close the transaction on
each Edge node with an authoritative decision; the throughput
of this global write (red line) drops to 0 when the connection
with the Reconciliation Manager in the Cloud is lost. Upon
network restoration, a recovery period starts, during which this
throughput is higher than eventual consistency because of the
enqueued messages on the Edge node. After 57 seconds from
the network restoration, all the enqueued messages have been
processed, and the system returns to normal operation.

The tests show that this approach outperforms full Cloud
architecture in cases where a relaxed consistency is tolerated.
Edge-Cloud continuum techniques allow for improving per-
formances by reducing the response time of network-intensive
applications and ensuring operation continuity in distributed
environments with unstable connections.

REFERENCES

[1] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The internet
of things, fog and cloud continuum: Integration and challenges,”
Internet of Things, vol. 3-4, pp. 134–155, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2542660518300635

[2] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–42,
2012.

[3] C. Colarusso, I. Falco, and E. Zimeo, “Towards business continuity with
edge-cloud continuum,” in 2024 11th International Conference on Future
Internet of Things and Cloud (FiCloud), 2024.

https://www.sciencedirect.com/science/article/pii/S2542660518300635

	Introduction
	Edge-Cloud continuum framework
	Framework evaluation
	Test Results

	References

